
JO
CO

?>•

a
THE UNIVERSITY OF MICHIGAN

Memorandum 2 9

CONCOMP

August 1970

THE CAMA DATA STRUCTURE

L J. Julylc
L. W. Wolf

Reproduced by ..,,_..
NATIONAL TECHNICAL
INFORMATION SERVICE

Sprinotield, V». Ml 5'

Tins dorxK-r.t L-:i La'"« '7] vov.J-!
far pubbe rclc«sü J.U-. suio/ita
clifltrtbution is unlimitGd.

■ ■ . ■

nO
D D C

»—5 'T'v . ■ ' ' i.

^ ß.

V 1

THE UNIVERSITY OF MICHIGAN

Memorandum 29

THE CAMA DATA STRUCTURE

L.J. Julyk

L.W. Wolf

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449

F.H. Westervelt, Director

supported by:

DEPARTMENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

, ■

ABSTRACT

The CAMA Data Structure is a variation on a standard

inverted-tree data structure. Data is stored in ''oacks"

which are blocks of contiguous, dynamically allocated

storage. Once a nack has been defined it need not remain

in virtual memory. If it is a member of the permanent data

structure it can be shifted out of virtual memory and

stored on disk memory until it is referenced aaain. If it

is a member of a tennorarv data structure it can be destroyed

when it is no longer needed. "Garbage collection" is handled

automatically for all "nredefined tynes" of oacks.

111

■ - "^ ■ i ■ "~' ■ ■<.,' !r*- ■

TABLE OF CONTENTS

1. INTRODUCTION 1

2. GLOSSARY 4

3. CAMA-DS USER'S GUIDE 12

3.1 Introduction 12

3.2 Global Routines 13

3.3 Routines Which Operate Only on
Association Tables (Type 3) 19

3.4 Routines Which Operate Only on Line
Directories (Type 2) 20

3.5 Routines Which Act Only or
Stacks or Queues (Type 4) 20

3.6 Routines to Use on Packs for Type 5
or Greater 21

3.7 Examples 23

4. REFERENCES 46

APPENDIX A: DATA STRUCTURES ROUTINES DESCRIPTORS . A-l

APPENDIX B: THE STRING-HANDLING PACKAGE B-l

1. INTRODUCTION

Under the auspices of the CONCOMP Project: Research in

Conversational Use of Computers, the authors undertook to

devise a man-machine interactive system (using a DEC 338

and an IBM 360/67) for Computer-Aided Mathematical Analysis.

In brief, CAMA enables the user to define mathematical

expressions using standard mathematical notations such as

Z, a, B, /f(x)d through the use of a Grafaeon and DEC 338

computer. These expressions can then be algebraically

manipulated or evaluated and the results displayed graph-

ically, if desired. The user may work with ordinary or

partial differential equations, matrices, polynomials,

double polynomials (i.e., polynomials spanning a 2-dimen-

sional space), integral equations, or he may define his own

modes.

Much of the work on CAMA involved the creation of a

suitable data structure, and it is this data structure which

is the subject of this report.

The CAMA Data Structure package (CAMA-DS) was designed

to be used with CAMA and a number of associated systems.

It interfaces with the MTS (Michigan Terminal System) system

at the University of Michigan to take advantage of the rich-

ness of that system, and in a few cases seeks to overcome

the limitations of that system.

CAMA-DS is a variation on a standard inverted tree

structure, a design chosen to meet a number of objectives.

First, it is intended to be flexible enough to be used in

a number of different types of problems, e.g., in symbol

manipulation routines in CAMA, in high-order interpreters

in CAMA, for graphics manipulation such as in an advanced

2
DRAWL system.

Second, CAMA-DS gives the user dynamic allocation of

space, in blocks, within virtual memory. Such dynamic allo-

cation may be programmed so that it is entirely automatic

(i.e., without the user's interaction) or it may be user-

controlled, either in a program sense or when he is executing

a problem.

Third, CAMA-DS is applicable to a large variety of

problems which may be interconnected. For example, the

symbol manipulation system may generate an equation which in

turn is parsed by the parser, interpreted by the interoreter,

and executed in the terms of matrix operations. All of

these operations would use the same basic data structure.

CAMA-DS could, of course, be used to store information for

representing the equations graphically as well.

Within limitations, CAMA-DS was designed to be adapt-

able to other data structure methods. For example, by

using the negative region it is possible to adapt CAMA-DS
3

to Childs* set-theoretic data structure or to a hash-coded

data structure, depending on the user'fi needs or desires.

CAMA-DS is intended to interface easily with FORTRAN,

and all the data in the structure can be located with simple

■

FORTRAN assignment-type Statements or subroutines. The

reason for this is that a number of the intended users

were expected to be programmers who were familiar with

some simple language such as FORTRAN, but not familiar with

assembler languages.

The fundamental unit of storage in this structure is

known as a pack. A pack is a block of contiguous variable-

length storage which can be handled by the data structure

routines. (Section 2 presents a detailed description of

packs and all the associated parts.) A pack consists not

only of the data stored in it but header information and a

flexible system of data storage which allows a pack to be

expanded in size dynamically during the execution of a pro-

gram. The pack may be stored in virtual memory or on disk.

It can be moved between these two memories at the will of

the user or automatically, depending on usage.

Section 2 is a glossary or a set of definitions of the

various words and terms used throughout the CAMA system when

referencing the data structure. Section 3 explains how to

use the system and includes a number of relatively simole

but nevertheless complete examples.

2. GLOSSARY

PACK. A pack is defined as a contiguous variable-length

dynamically allocated block of storage divided into three

sections: the negative region, the header region, and the

data region.

LAYOUT OF A TYPICAL PACK

Negative

Region

Header

Region
x _L

Data

Region
J i L_

Each pack has a name associated with it. It may be

stored in virtual memory or on a disk. A pack may be trans-

ferred to or from the disk dynamically by control of the

program or by control of the user at the discretion of the

writer of the program being used. During the period when

activity concerning the pack is low it may be transferred

out onto disk to save virtual memory charges. It will be

transferred in again the n^^*- time it is referenced. When a

pack is not located in virtual memory it will be found on the

disks and brought into virtual memory.

Packs are addressed at the first word in the data re-

gion. The header region and the negative region are dis-

placed negatively with respect to this address. Thus data

scored in the data region can be addressed by any FORTRAN

variable reference that the uuer wants to use.

The header region contains the information necessary

for the handling of the pack. The negative region is

available for user use.

NEGATIVE REGION. The negative region consists of a variable

number of words. It is used at the discretion of the user

for storing information that he needs when using data and

storage retrieval systems other than those provided in CAMA-DS,

In particular the negative region may be used with the set-
3

theoretic structure package or with others which the user

might wish to design.

HEADER REGION. The header region is a fixed-length region

of eight words or 32 bytes. In this region information is

stored which is necessary for handling of the pack and the

allocation of storage. The header region is divided into

nine subregions.

LAYOUT OF HEADER REGION

PN

Pack Name

NL TJC

16

BP
Back

Pointer

EP
End

Pointer

TP
Tail

Pointer

LN
Line

Number

7 9 U LV 15 19 73 27 3L

PN Pack Name. Must consist of exactly 8 characters (including

blanks). The only restriction is that pack names may not

start with a question mark; it may contain non-printing

characters.

L Length. A half-word positive integer indicating the

maximum length of the data region. It may be zero. The

actual number of bytes of storage obtained for the data

region is a function of L and T (see below).

T Type. A half-word integer specifying the type of pack.

There are six predefined types of packs:

0 - master list (12 bytes/unit)

1 - list (12 bytes/unit)

2 - line directory (10 bytes/unit)

3 - association table (24 bytes/unit)

4 - stack or queue (4 bytes/unit)

5 - data pack (4 bytes/unit) .

It should be noted that "garbage collection" is automatic

in the data regions of all of the predefined pack types

indicated above.

Use of the Type 5 pack assumes that the user is up-

dating the TP and the high-order bit of LN. The RGB

routine performs this updating automatically; otherwise

the user must perform it. (See also LN.)

Packs of Type 6 or greater (with 4 bytes/unit) may

be created by the user for his own purposes.

Pack Types 0 through 4 are automatically expanded by

ten units whenever their associated routines indicate an

overflow.

NL Negative Length. A half-word positive integer indicating

the length of the negative region in 4-byte units.

UC Usage Count. A half-word positive integer indicating the

number of tasks that are using this pack as common data.

■ ■. ■ . ■

The user may use this counter or not at his discretion.

The high-order bit of UC is used to indicate whether the

pack is protected (=1) or unprotected (=0).

BP Back Pointer. A full-word integer pointer to the list

in which the pack was first defined. It is zero in the

case of a master list.

EP End Pointer. A full-word integer indicating the end of

the current data region.

TP Tail Pointer. A full-word integer indicating the end of

the data stored in the region; i.e., it ooints to the

next available byte in the data region.

LN Line Tumber. A full-word integer times 1000. A zero

indicates that the pack is not stored on the disk; a non-

zero value indicates that the pack is stored on the disk

although not necessarily in its current state. The

high-order bit of this word signifies whether the pack

has been changed (=1) or not (=0) while in virtual memory,

The high-order bit enables the user to save his present

data structure without using extra time to save data

which has already been stored on the disk.

DATA REGION. The data region consists of a variable number

of words; depending on the type of pack that is being con-

sidered, the number of words may be expanded or contracted

dynamically. The data region is addressed at the first byte

of this region, which is the address of the pack. Depending

on the type of pack, data is stored according to several

fixed formats or according to the user's desires. For packs

of Type 0-4 a fixed format is established.

PACK POINTER. The pack pointer is a pointer which points to

the first word of the data region of the pack.

PERMANENT PACK. A permanent pack is one which is not destroyed

automatically by the system at shutdown but is stored on the

disk. However, it may be destroyed by the user at his own

discretion,

PERMANENT DATA STRUCTURE. A permanent data structure consists

of lists and other types of packs which are maintained at any

time the system is shut down.

TEMPORARY DATA STRUCTURE. A temporary data structure is one

which is lost or destroyed during a period of shut down and

has to be recreated, if the user desires, when he recommences

operations. A temporary data structure is always in virtual

memory and is never stored on the disks.

LIST. A list is a pack which consists of a set of 8-character

names and associated pointers ordered alphabetically according

to the names. All packs are defined within a list, which is

the node of all branches of the inverted tree which forms the

data structure. For example.

LIST

nm

nm

ptr

Ptr

ASSOCIATION
PACK

LIST

nm Jpti

LIST

nm jptr

In a permanent data structure, one and only one list can have

a given name; however a list may have the same name as another

pack. For example no two lists may have the name ABLE, how-

ever ABLE may be the name of a data pack or any other tyoe of

pack. This restriction applies only to permanent data struc-

tures and not to temporary structures . A terroorary data struc-

ture forms a non-intersecting set with all other data structures,

MASTER LIST. A special list; the trunk of a data structure.

It is created using EN with the tyoe set to 0 for a permanent

data structure. There can be one and only one oermanent data

structure. The pointer to the master list is obtainable (once

it has been defined) using the MASPTR routine (see Example 2).

STACK. A stack or queue is defined as a set of word units

(4 bytes) forming an ordered stack that can be manipulated in

an ordered fashion. Usually pointers are stored in these

word units. The user creates a stack or queue by means of

the EN or ENT routine with the type set equal to 4.

TEMPORARY PACK. May stand alone or may be part of a temporary

data structure. A stand-alone temporary pack is created using

the ENT routine (see Example 4). A temporary pack which is

part of a temporary data structure is created using EN, where

the master list for the temporary data structure was created

using ENT (see Example 4). In a temporary data structure, the

user must keep track of the master pointer; the routine MASPTR

cannot be used. Nor can the routine LIST be used on a temporary

data structure. Moreover, the user must keep track of the nodes

which form the tree of his temporary data structure. This is

10

not too high a penalty in view of the fact that a temporary

data structure is not meant to be too extensive and involved,

LINE DIRECTORY. A pack whose structure is similar to that

of the line directory for an MTS line file. It consists of

10-byte units made up as follows:

LN LL PL

o : ! 5 9

where:

LN - Line Number, the number of a line times 1000 (not

to be confused with the line numbers of the disk on

which the data structure is stored).

LL - Length of Line, a half-word integer indicating the

length of the line.

PL - Pointer to Line, a full-word integer virtual address

to the first byte of the line.

Routines RLBC and RLCB enable the user to store information

in the line directory much as he would in a line file in MTS.

The line directory is created using EN or ENT with the type

set equal to 2 (see Example 5).

DATA PACK. A pack of contiguous word (4-byte) units, whose

data and negative regions are comoletely user-controlled.

The user may manipulate the tail pointer or use the negative

region in order to form his own data configuration; further,

he can write his own subroutines to manipulate the data and

negative regions. For example, the data region might be used

to save the results of some matrix operations, thereby

11

eliminating the need for repeated calculation. The data

region might even be the entire memory region of another type

of data structure, for example a set-theoretic data structure
4

or a relational memory with an associative base . A Data

Pack is created using the EN or ENT routines with type set

equal to n where n is greater than or equal to 5.

Association Table . A triple of 8-character elements that form

a 24-byte unit structured as follows:

t 0
1 15 23

where: A = association;

0 = object;

V = value.

An association table is created using EN or ENT with the type

equal to 3. Elements are entered into the table using the

EA routine. Information is obtained from the association table

by means of the FA routine, and is deleted by using the DA

routine.

12

3. CAMA-DS USER'S GUIDE

3.1. Introduction

All CAMA-DS subroutines can be used in the code of

any program wishing to use the data structure. They are

also used within the ChMA interpreter . The use of the DS

routines in CAMA is described in another report , although

it does not significantly vary from the description given

here.

When using the data structure, the user must first

create a master list. No other data structure operations

can be accomplished until a master lint is created. This

is done using the EN subroutine with type set to 0.

Once the master list has been created, any other

type of pack can then be created and referenced on the

master list. For example, the following scheme

master list
 -»I list |

* data pack j

association
table

might be used.

However, more frequently the user will use the master

list to reference other lists which in turn reference packs

of Type 1 or higher. For example the user may wish to

create a structure which looks like this:

DATA PACK|

13

The exact form of the structure is, of course, up to

the user.

All packs in the permanent data structure are kept

on disk storage at times of shut-down if the user has

saved them. After a shut-down the user may start over

again retrieving the old structure by merely calling the

routine START. Packs will be retrieved from the disk only

when reference is made to them.

Subsequent sections contain detailed statements of

all operations which are possible with the data structure,

together with examples, nctailod descriptions of each

routine are found in Aonendix A.

3.2. Global Routines

Global routines may act on any type of pack within

the data structure. Tncy are as follows:

DESTP destroys a pack, or group of packs if linked

through a list. This routine also garbage-

collects the disk. If a pack has a usage

count which is greater than one, then the

pack is not destroyed but the usage count is

reduced by one. Also, if a pack is protected

then it is not destroyed. In a temporary

data structure the usage counts and protected

state of a pack are ignored.

EMP empties the data region of any pack (except

a list) .

14

EN This routine is used to create all packs.

However, all packs must be defined within

a list, unless the user is creating a master

list. A roaster list roust be established

before any permanent pack can be created.

This is done by using the EN routine with

the type set equal to 0. The pointer to

the roaster list can always be retrieved once

it has been defined by calling the function

MASPTR (see Examples 1,2, and 3) .

If the user tries to create a pack referenced

in a list using a name that already exists

within the list, EN will return the pointer

to the previously existing pack and set the

return code accordingly. Since list names

must be unique, if the user tries to create

a list of the same name as an existing list

in the data structure, the return code will

indicate that it already exists and will re-

turn its pointer. Note that ENT is used to

create any free-standing temporary pack or a

master temporary list (type set equal to 1).

Thereafter, the temporary data structure is

expanded by using the EN routine (see Example 4)

The following k'nds of oacks are created

with EN:

15

TYPE KINDS OF PACKS

0 Master list

1 List

2 Line directory

3 Association table

4 Stack

5 Standard data pack (with auto-

matic garbage collection)

6 and beyond are user-defined packs

ENT Used to create any free-standing temporary

pack or a master temporary list. When creating

a master temporary list the type is set equal

to 1. With the exception of Type 0, all tyoes

of packs that exist for permanent data struc-

tures can be created as temporary packs with

type set to the appropriate values.

For example, when a user wishes to create

an association table for temporary use he

calls ENT with type set equal to 3. This asso-

ciation table is not referenced on any list;

therefore it is free-standing

A list created by ENT with type set to 1 may

reference other packs. These packs, whatever

their kind, are created using EN not ENT. ENT

cannot be used with type set equal to 0 (see

Example 4).

16

EXP expands or contracts the negative and/or

data region of any pack. The results of

expanding or contracting the negative region

are as follows:

Suppose that the negative region originally

consisted of three words, stored as shown:

AAAA BBBB CCCC

If the negative region is expanded by one

unit, the results would be:

0000 AAAA BBBB CCCC
(zeros)

If the negative region were contracted by

two units, the results would be:

BBBB CCCC

The data regions of pack Types 0-4 are

automatically expanded and contracted by

means of the predefined routines which manipulate

them.

The data regions of Type 5 packs are automatic-

ally contracted when saved on the disk.

The data regions of pack-types greater than 5

cannot be contracted.

FN Used to retrieve the pointer to a predefined

pack. In order to do so, the user must know

the name of the pack and have the pointer to

the list in which the pack was defined. In

the permanent data structure, if the user knows

17

the name of the list in which the pack was

defined, he can obtain the pointer to that

list by calling LIST.

An association table might be used to keep

track of where packs other than lists are de-

fined. This has been deliberately left open so

as to give the user some degree of flexibility.

It is expected that the users will define his own

scheme for obtaining his goals.

If the user wishes to retrieve all of the

names from a list, with or without their

pointers, he can do so by calling FN also.

This is accomplished by setting the high-order

byte in the name argument and/or return

pointer argument to the character "?". If the

remaining low-order bytes of the word are zero,

then the results are printed through SPRINT;

if they are non-zero, then they are taken to

be the address of a vector in which the results

are to be stored. Blanks or zeros will be

stored at the end of each vector, depending

upon whether it is a name vector or a pointer

vector. The vectors should be large enough

to hold all the names and/or pointers. This

can be done by having an arbitrarily large

vector, or by using the routine HDINF to

18

determine the number of entries in the list

and then creating a vector sufficiently

large to do the job.

FNM Same as FN, except that the last two characters

of the 8-character name are masked for the

search.

Note that EN, FN, and FNM routines can be

used only on packs of Type 0 or 1; if they

are used on any other type of pack, no action

will be taken, and the return code will be

set accordingly.

FREEP Removes a pack from virtual memory and, if

it has been changed in core, saves it on

the disk. If the pack belongs to a temporary

data structure, it is destroyed.

HDINF Obtains header information for any pack.

INGÜC Increments the usage counter of any pack,

PROT Sets the protection switch so that a pack

cannot be destroyed by accident.

SAVEP Saves a pack, or group of packs if linked

through a list, on the disk if the pack has

been changed. SAVEP does not remove the pack

from memory. Temporary packs cannot be saved.

SCSW Used to set the change switch on a pack.

START Used to initially bring a predefined data

structure off the disk and into virtual memory.

19

It actually brings in only the master lists

which is all that is necessary for subsequent

manipulations of the data structure (see

Examples 2 and 3).

UPROT Unsets the protection switch.

3.3. Routines Which Act only on Association Tables (Type 3)

EA Used for entering associations into an

association table. If the association is

already in the table, it is not entered, and

the return code is set accordingly.

FA Used to answer the following eight questions,

where A, 0 and V mean some specified

8-character element, and where ? asks what

set of elements satisfies the relation:

1. A(0) = V i.e., is this a member of the set?

2. A(0) = ? i.e., what are all the Vs with

the given A and 0?

3. A(?) = V

4. ?(0) = V

5. A(?) = V i.e., what are all the 0s and Vs

with the given A?

6. ?(?) = V

7. ?(0) = ?

8. ?(?) = ? => complete dump.

As an example of the use of FA, consider the

question, A(0) = ?. The results would be the

20

set of values which satisfies this relation.

If the relation does not exist, then the

return code is set accordingly.

FA1 Used in the same way as FA except that it

returns on the first match. It should be

used to save time when the user expects

only one element in the set.

DA Used to delete associations from an association

table. With one call on this routine, the

user can delete one association or a set of

associations (see Example 6 for the use of

these routines).

3.4. Routines Which Act Only on Line Directories (Type 2)

RLBC Used to enter and delete lines in a line

directory.

RLCB Used to retrieve lines from a line directory.

These routines can be used only on packs of Type 2. If

used on any other type of pack, no action will be taken, and

the return code will be set accordingly (see Example 5 for

use of these routines).

3.5. Routines Which Act Only on Stacks or Queues (Type 4)

PUSH Used to enter a data word on the top of a

stack and push the stack down.

PULL Used to retrieve a data word from the top of

a stack and pop the stack. If the stack is

empty, the return code is set.

■

21

PUTS Used to put a data word on the bottom of a

stack.

GETS Used to get a data word from the bottom of

the stack. If the stack is empty, the return

code is set.

These routines can be used only on Type 4 packs.

3.6. Routines to Use on Packs for Type 5 or Greater

RBC Used to transfer data into the data region

of a pack. If room is not available to

transfer all of the data, then the return code

is set. The user must expand the pack as

necessary by using the EXP routine, which

takes care of the tail pointer and the high-

order bit of the line number in the header

which indicate that the pack has been changed.

RGB Used to retrieve data from the data region

of a pack. These routines are flexible so

the user can transfer a byte of data or N

bytes at one time, and from any byte boundary

within the data region (see Example 9).

NOTATION FOR EXAMPLES OF PACK TYPES

r\

w

- LIST

- LINE DIRECTORY

- ASSOCIATION TABLE

- PUSHDOWN STACK OR QUEUE

- DATA PACK (TYPE>5)

- DATA PACK (TYPE=5)

- NEGATIVE REGION

- PROTECTED

• = > PACK IS IN VIRTUAL MEMORY

 »> PACK IS OUT ON DISK

22

23

3.7. Examples

EXAMPLE 1. CREATING A PERMANENT DATA STRUCTURE

Declarations

INTEGER*2 HlO/10/,Hl/l/,H5/5/,116/6/fH

Create the master list

CALL ENCO/MASTLIST',Hlf0,0,IMP)

Create a list within the master list

CALL EN(IMP, 'LISTCCCC,0,H1,0,IPLC)

View of data structure at this point

master list MASTLIST with one
unit reserved for data region,
and zero units reserved for
negative region.

/
contains pointer to j

MASTLIST .. .header... / LISTCCCC.

^*
LISTCCCC

*C(IMP) poi nts here

LISTCCCC .. .header^A

C(IPLC)
points here

List LISTCCCC with zero un
reserved for data region a
negative region.

its
nd

Create association pack within master list

H=3

CALL ENdMP^ASSOPACK' ,H5,H,0,IPA)

*C(...) indicates the contents of the FORTRAN variable whose

name is enclosed in the parentheses.

24

View of data structure

MASTLIST

C(IMP) points here
(has been changed
since the master
list has been ex-
panded by ten
additional units
when trying to find
room for a new pack.
A pack, Type 0-a, is
automatically exoan-
ded by ten units
anytime expansion is
warranted.)

.. .header...

ASS0PACK

LISTCCCC

note that lists
are ordered
alphabetically

■contains pointer to
data region of
ASSOPACK

-TP of MASTLIST
points here.

EP of MASTLIST points here.

C(IPA)
points here

ASSOPACK ...header...

^^
i

jr

Association pack ASSOPACK with 5 units
reserved for data region and zero units
reserved for negative region.

25

Create a data pack within list LISTCCCC

H=20

CALL ENdPLC'DATAPACK' ,H,H6,Hl, IPD)

| View of data structure.

i | LISTCCCC ...header...
DATAPACK 4.

region of DATAPACK

4 Note that LISTCCCC
was expanded auto-
matically. The
pointer to LISTCCCC
which is stored in j
the master list

/"

MASTLIST has been
updated.

^C(IPD) points here

1 1 1 DATAPACK >| |

 data pack of Type 6 with one unit
reserved for negative region and
20 units reserved for data region.

Save data structure onto disk

CALL SAVEP(IMP)

This routine will save the complete data structure

since C(IMP) points to the master list.

END

26

View of complete data structure as a tree structure.

MASTLIST

LISTCCCC

^ASSOPACK '^A. DATAPACK

EXAMPLE 2a. ENLARGING A PREVIOUSLY DEFINED DATA STRUCTURE.

Declarations

IMPLICIT INTEGER*2(H)

Establish previous data structure

CALL START

Current view of memory

I MASTLIST ... header...
^—^line number to where
• 'pack is defined on

ASSOPACK
LISTCCCC

disk storage

The START routine only brings the master list into !
memory. Note that the master list has been con- j
tracted in size and is only as large as is neces- {
sary to hold its current data. j

Create a list within the master list.

Hl«l

CALL EN(MASPTR(0) /LISTAAAA' , 0 ,H1, 0 , IPLC)

Note that MASPTR routine was used to get the

pointer to the master list.

27

Total view of data structure

JLMASTLIST

ft ^ ^ ILISTAAAA

r./^SSOPACK v'lLISTCCCC

t..J V*J ^^
^^ ^'' " "' DATAPACK

'. i

Only the packs represented by solid lines are in

memory at this point. |

Create a list within list LISTAAAA

H2-2

CALL EN(IPLC,'LISTBBBB',H2,H1,0,IPLB)

Create a list within LISTBBBB

CALL ENdPLB^LISTDDDD' ,H2,H1,0, IPLB)

Create a line directory within LISTBBBB

CALL SNUPLB,'LINEDIR ' ,0,H2,0,IPLD)

Total view of data structure

MASTLIST

ASSOPACK^''
LISTAAAA

DATAPACKf

LISTBBBB

LINEDIR

LISTDDDD

28

In order to save packs which have been changed while in virtual

memory end release data structure from the system's memorv.

CALL FREEP(MASPTR(0))

Total view of data structure

yi
/

ASSOPACK^_ /
i

LISTCCCCl]

/

-^ IDATAPACK
I (
L I

MASTLIST

kvj ILISTAAAA

'_-l I I

/'
L.I

ILISTBBBB

^j i LISTDDDD

/ iLINEDIR
l I
I '
J

Create a pushdown stack from within list LISTBBEB.

H4=4

CALL LIST ('LISTBBBB',IPLB)

CALL EN (IPLB, 'PUSHDOWN, 0^4 , 0, IPPD)

Note that the LIST routine was used to obtain the

pointer to the list LISTBBBB.

29

Total view of data structure

1 *

\ /

\ ASSOPACK^

| J 1

\

1

MASTLIST
^^^ (~\ PUSHDOWN
^ ILISTAAAA i^)

\ ^ ^| LISTDDDD I

LISTCCCCi l y l-- I
1 • v

t>' '*'' , .'LINEDIR
<—V^ \J
1 jDATAPACK
1 j

Save data structure

CALL SAVEP(IPLB)

END

EXAMPLE 2b. USING THE DESTROY ROUTINE DESTP.

Here we will destroy the pack LISTAAAA.

Establish previous data structure

CALL START

Protect pack LINEDIR

CALL LIST('LISTBBBB',IPLB)

CALL FN(IPLB,'LINEDIR',IPLD)

CALL PR0T(IPLD)

Destroy pack LISTAAAA

CALL LIST('LISTAAAA',IPLA)

CALL DESTP(IPLA)

30

Current view of data structure

/

ASSOPACK! < /

MASTLIST

LISTAAAA

t

i
i

' i

i

s\ iLISTCCCC

i - i

DATAPACK

LINEDIR

Note that since the pack LINEDIR was protected, LISTAAAA,
LISTBBBB, and LINEDIR were not destroyed. However, packs
PUSHDOWN and LISTDDDD were destroyed.

Save current data structure

CALL SAVEP(MASPTR(0))

END

EXAMPLE 3. EXPANDING THE NEGATIVE REGION OF A PACK AND
MOVING DATA INTO IT.

Declarations

IMPLICIT INTEGER*2(H)

INTEGER $

CALL START

Use LIST routine to get pointer to LISTBBBB

CALL LIST('LISTBBBB',IPLB)

Use FN routine to get pointer to LINEDIR

CALL FNCLINEDIR ',IPLD)

31

Total view of data structure

MASTLIST

LISTCCCC

y_

J* ^ *ASSOPACK

I DATAPACK

. J

(]PUSHDOWN v /

LISTBBBB

i i
LISTDDDD

LINEDIR

Create a negative region for pack LINEDIR

H2=2

CALL EXP(IPLD/0,H2)

This creates a negative region of two words for

pack LINEDIR.

Store four characters in the first word

CALL M^VS^CABCD') ,IPLD, 1,4 ,-32-8+1)

Store a floating-point constant in second word

CALL M0VS($(3.1415927),IPLD,1,4,-32-4+1)

Layout of LINEDIR storage

»4 Bytes!

ABCD

4 Bytes->

3.1415927

I*-
negative
region

32 Bytes

LINEDIR

header
region

a^
C(IPLD) points
to start of a
zero length
data region.

CALL SAVEP(IPLD)

END

Note: when entering data into the negative region
of a pack which is of Type < 6 one should call
SCSW.

32

EXAMPLE 4a. CREATING A TEMPORARY FREE-STANDING PACK.

Use queue routines.

In this example we are reading the source and

holding input lines to be processed until we get an

end-of-file.

Declarations

IMPLICIT INTEGER*2(H)

INTEGER GSPACE,$

DIMENSION BUF(64)

Create a temporary Type 4 pack

H4=4

CALL ENTC QUEUE ' , 0 ,H4 , 0 , IPQ)

Read Source until E0F

1 CALL SCARDS(BUF,HL,0,&10)

I=HL+2

Get a dynamic buffer by calling GSPACE and push the

pointer to the dynamic buffer into QUEUE.

CALL PUSH(IPQ,GSPACE(I,IPB))

Store length of the input line in first two bytes of

the dynamic buffer.

CALL M0VS ($(HIJ , IPB ,1,2,1)

Move the line read into the dynamic buffer.

I=HL

CALL M^VS(§(BUF),IPB,1,I,3)

■ ■ ■ ■ . ; ■ ■ , ■■ ■ ■ ■ ■ ■ ■

33

Read next line

G(j) T^ 1

■

Process all lines on E0F in order, and then start

reading again.

10 CALL GETB(IPQ,IPB,&1)

Print the line out

CALL M0VS(IPB,$(HL),1,2,1)

I=HL

CALL M0VS(IPB,$(BUF) ,3,1,1)

CALL SPRINT(BUF,HL,0)

CALL FSPACE(IPB)

Do something with the line

CALL ST0REM(BUF,HL) (see Ex. 5a)

Get another line

G0 TO 10

END

EXAMPLE 4b. CREATING A TEMPORARY DATA STRUCTURE.

Declarations

IMPLICIT INTEGER*2(H)

Create a master list for temporary data structure.

Hl=l

CALL ENTCTMASLIST',0,H1,0,IMP)

Create a list within the temporary master list.

CALL EN(IMP,'TLISTAAA1,0,H1,0,ILA)

34

Create a queue within list TLISTAAA

H4=4

CALL EN(ILA,'TEMPQUE ',HI,H4,0,IQ)

Total view of temporary data structure

TMASLIST

^«^
TLISTAAA

J^ jTEMPQUE

One could go on and on, but the essential point is that

a temporary data structure acts like a permanent data

structure, except in the following:

1. The master list is created using ENT.

2. The routines LIST and MASPTR can not be used
on it.

3. The routine FREEP destroys the pack or linked
packs within a temporary data structure.

EXAMPLE 5a. USING LINE DIRECTORY ROUTINES

This routine takes the line read in by Example 4a and

stores it into a line directory in order to define, say,

a macro.

SUBROUTINE ST(?REM(BUF/HL)

IMPLICIT INTEGER*2(H)

INTEGER $

,-

35

Find first nonblank character

I=HL+1

5 J=J+1

1=1-1

IF(I.EQ.O) RETURN

CALL TSCH($(BUF) ^^ ' &5)

I=$(BUF)+J-1

Convert line number to internal fixed point times 1000

CALL CLNUM(I,LN,J,&99)

Get pointer to list that LINEDIR is defined in.

CALL LISTCLISTBBBB',IPL,&99)

Get pointer to LINEDIR

CALL FN(IPL,'LINEDIR ,,IPLD,&99)

Store line in LINEDIR

HLEN=HL-$(BUF)+J

CALL RLBC(J,IPLD,HLEN,LN)

99 RETURN

END

EXAMPLE 5b. LISTING THE CONTENTS OF LINE DIRECTORIES

This routine lists the contents of a line directory pack.

SUBROUTINE LISTP(IPTR)

Where IPTR is the pack pointer to a line directory.

Declarations

IMPLICIT INTEGER*2{H)

36

INTEGER $,LNS/-99999999/

REAL BUF^)/' •/

Look for first line

LN=LNS

LNT=LN

CALL RLCB(IPTR,$(BUF)+12,HL/LN,&5/&20,&99)

Convert line number for printing

CALL CLNUMB(LNT,$(BUF)+1,599)

Print line with line number

HLEN=HL+12

CALL SPRINT (BUF^LEN,*))

Get next line

G0 T(^ 5

20 HLEN=11

CALL SPRINT('END OF PACK',HLEN,0)

99 RETURN

END

EXAMPLE 6. APPLICATION TO GRAPHICS

The EA, FA, and DA routines might be used to keep

track of a picture which is an assembly of assemblies

and objects.

37

Suppose that the internals of the ASSOPACK were:

| ASSOPACK
OBJ Al 01
0BJ Al 02
ASSY Al A2
ASSY A2 A3
ASSY A2 A4
(?BJ A2 03
0BJ A2 04 i
0BJ A3 05
0BJ A3 06 1
0BJ A3 07
0BJ A4 08 1
0BJ A4 09
ASSY A5 A2 1
0BJ A5 010 i
ASSY A6 A5 I
0BJ A6 011 i
0BJ A6 012 !
qiBj A6 013 j
0BJ A6 014

and the internals of list LISTCCCC were:

| LISTCCCC
0BJ1
0BJ2
0BJ3
0BJ4
0BJ5
0BJ6
0BJ7
0BJ8
0BJ9
0BJ1O
0BJ11
0BJ12
0BJ13
0BJ14

^

pointers to data packs which
define these objects.

To add an 0BJECT we create the routine AD0BJ

SUBR^UTINE ADgJBJ (0BJNAM, PBUF, HLB, *)

38

where OJBJNAM - name of object to be added

PBUF - pointer to buffer which has definition of
object

HLB - length of buffer (halfword)

RC=4 - OBJECT with that name already exists.

Declarations

IMPLICIT INTEGER*2(H)

Get pointer to LISTCCCC

CALL LIST ('LISTCCCC ,IPLC)

Create pack for 0BJNAM

H5=5

HL=HLB/4+l

CALL ENdPLC^BJNAM^L^HS^IP^&lO)

CALL RBC (PBUF,IP0,HLB,0)

RETURN

10 RETURN 1

END

In order to create an assembly which is made up of

assemblies and objects, we would have the following

code:

SUBROUTINE ADASSY(ASSYN,ASSY,^BJ,NA,N0,*)

Where ASSYN - name of assembly to be added

ASSY - vector which contains the names of assem-
blies which are to make up ASSYN

0BJ - vector which contains the names of the
objects which are to make up ASSYN

NA - number of names in ASSY

39

N0 - number of names in 0BJ

R04 ASSYN already exists.

Declarations

REAL'S ASSYN,ASSY(1),4BJ(1) ,A

INTEGER $

Get pointer to ASSOPACK

CALL FN(MASPTR(0),'ASSOPACK',IPAP)

Check to see if ASSYN already exists

N=$(A)

CALL ST0RC($(N),1,'?')

CALL FAKlPAP^ASSYN^&gg)

Set up ASSOPACK

IF(NA.LE.O) G0 T0 10

00 5 1=1,NA

5 CALL EA(IPAP,'ASSY

10 IF(Np.LE.0)G(J T0 99

DQ(20 1=1,N0

20 CALL EA(IPAP,'^BJ

RETURN

99 RETURN 1

END

',ASSYN,ASSY(I))

',ASSYN,0BJ(I))

Now, in order to draw a picture we need all the pointers

of the objects which make up the picture. The following

routine might be written to do this.

40

SUBROUTINE FIND0 (NAME,IVPTR,NP,*)

Where NAME - name of assembly or object to be drawn

IVPTR - a vector in which the pointers are to be
stored

NP - number of pointers stored.

Declarations

REAL*8 NAME,BLANK/' '/»TEMPA(100),TEMP0(100)

INTEGER IVPTR(1)

IMPLICIT INTEGER*2(H)

TEMP^(l) = BLANK

Get pointer to ASSOPACK

CALL LIST{'ASSOPACK*,IPAP)

NP=0

NA=0

Check to see if this is only an object

CALL LIST('LISTCCCC',IPLC)

CALL FN (IPLC,NAME, IVPTR(1) ,8.10)

NP=1

RETURN

Get all the assemblies which make up NAME

10 TEMPA(1)=NAME

NA=1

1=1

20 N=$(TEMPA)+8*NA

CALL ST9RC ($(N),1,'?•)

CALL FA(IPAP,'ASSY ',TEMPA(I),N,&30)

J=NA

41

15 J=J+1

IF(BLANK.NE.TEMPA(J)) G0 T0 15

NA=J-1

18 1=1+1

G0 T0 20

30 IF(I.LT.NA) G0 T0 18

Get all the objects which make up all the assemblies.

N0=O

D0 40 1=1,NA

N=$(TEMP0)+8*N0

CALL ST0RC($(N),1,'?')

CALL FAUPAP^BJ ' ,TEMPA(I) ,N, &40)

J=N0

25 J=J+1

IF(BLANK.NE.TEMP0(J))G0 T0 25

N0=J-1

40 C0NTINUE

Get all the pointers to the objects.

NP=N0

IF(N0.EQ.O) RETURN 1

DO 50 1=1,N0

50 CALL FN(IPLC,TEMP0(I),IVPTR(I))

RETURN

END

i

42

EXAMPLE 7. USING STACK-HANDLING ROUTINES

For examples concerning PUSH, PULL, GETB, and PUTB

routines see Example 4a. When storing pointers, the

user must remember not to store pack pointers unless

he is careful not to expand the packs or use FREEP

on them, since this will change their associated

pointers. He should also remember that FREEP works

on everything connected to the pack to be released.

For example, if what was in memory looked like

PUSHDOWN

LISTDDDD

Then upon calling FREEP with the argument set to the

pointer to LISTBBBB, he would have

■■ .--■' ■ .'-.»-;.■■•

43

MASTLIST 1 ^

^\ \ /PUSHDOWN

^ LISTAAAA ^ ^

r^. r -i^"
> LISTBBBB

yA S ILISTDDDD c>c^ . .
I ILINEDIR L-,

where only the packs represented by solid lines are in

virtual memory.

EXAMPLE 8. FN USING "?"

Suppose in list LISTDDDD there had been defined a set

of symbols, and stored at the pointer associated with

each symbol was a pack which contained the code neces-

sary to display this symbol on some display device.

These symbols might then be manipulated to form, say,

equations.

In order to display all these symbols so that the

user can select them one by one to use as he wishes,

all the pack pointers in this list of symbols must be

retrieved. This can be done with the following code:

Declarations

IMPLICIT INTEGER*2(H)

REAL*8NAME

44

Get the pointer to the list LISTDDDD.

CALL LIST ('LISTDDDD',IPLD)

Get information about LISTDDDD

CALL HDINF(IPLD,NAME,HL,HT,HNL,HUC,IBPTR,LEND,LN)

In LEND is returned the current number of bytes being

used for the data region. Get space to store pointers

in

CALL GSPACE{LEND/3+4,IPB)

LEND/12=aumber of pointers in LISTDDDD.

(LEND/12)*4=number of bytes we need. We add 4
bytes since the last word is zeroed
by FN.

Store a '?' in high-order byte of pointer to space ob-

tained.

CALL ST0RC($(IPB),1,'?')

Now, get all the pointers in LISTDDDD

CALL FN(IPLD,NAME,IPB)

All the pointers stored in LISTDDDD have now been trans-

ferred to the vector which was obtained through GSPACE.

It should be noted that FN has actually done more than

just transfer its pointers: It has also brought the

symbol packs which were on the disk into core so that

they can be used.

EXAMPLE 9. ROUTINES RBC AND RCB.

Suppose that a variable Is stored in data pack DATAPACK

and that we wish to r-hange its current value. It is

» ■ - • . -. •- ■, ...-VB.. ... ,,... „„, _ ,

45

the third word stored in the data region.

Declarations

IMPLICIT INTEGER*2(H)

INTEGER $

Get pointer to LISTCCCC

CALL LIST(LISTCCCC,IPLC)

Get pointer to pack DATAPACK

CALL FN(IPLC,'DATAPACK',IPDP)

Get current value of variable

HL=4

HDISP=8

CALL RCB(IPDP,$(VAR),HL,HDISP)

Perform some calculation with VAR

VAR=VAR**2-3.5*VAR-2.

Return VAR to its pack

CALL RBC{$(VAR),IPDP,HL,HDISP)

Make sure that it gets saved

CALL SAVEP(IPDP)

END

4. REFERENCES

1. MTS Manual, Computing Center, University of
Michigan, Ann Arbor, 1969.

2. Herzog, B., and Shadko, F., DRAWL, Memorandum
29, Concomp Project, University of Michigan,
Ann Arbor, 1970, in preparation.

3. Childs, D.L., Description of a Set-Theoretic
Data Structure"^ Technical Report 3, Concomp
Project, university of Michigan, Ann Arbor,
March 1968, 27 pp.

4. Ash, W., and Sibley, E.H., TRAMP; A Relational
Memory with an Associative Base^ Technical
Report 5, Concomp Project, University of Michi-
gan, Ann Arbor, May 1968, 80 pp.

5. Feldman, J.A., Aspects of Associative Processing,
Technical Note 1965-13, Lincoln Laboratories,
Massachusetts Institute of Technology, Lexington,
Mass., April 1965.

6. Dingwall, T., Julyk, L., and Wolf, L., The CAMA
Interpreter, Memorandum 36, Concomp Project,
University of Michigan, Ann Arbor, August 1970.

7. Julyk, L., and Wolf, L., CAMA (Computer-Aided
Mathematical Analysis); A General Description,
Memorandum 33, Concomp Project, University of
Michigan, Ann Arbor, August 1970.

46

Appendix A.

DATA STRUCTURES ROUTINES

DESCRIPTORS

A-l

A-2

NAME:

PURPOSE:

CALLING SEQUENCE

ARGUMENTS:

RETURN CODE:

COMMENTS

DA

To delete an association or a set of

associations from an association table.

CALL DA(APTR,A,0,V,&1,&2)

APTR pointer to an association table,

A 8-character name of an ASSOCIATION

or a question mark.

0 8-character name of an 0BJECT or a

question mark.

V 8-character name of a VALUE or a

question mark.

RC-4 This association does not. exist in

this association table.

RC=8 APTR does not point to an associa-

tion table.

The question mark must be the first

character whenever it is used. If all

the arguments A, 0f and V are set equal

to a question mark then the table will

be emptied. It is more economical, how-

ever, to use the EMP routine to empty

an association pack.

r

A-3

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

DESTP

Used to destroy a pack.

CALL DESTP(PPTR,&1)

PPTR pointer to a pack.

RC=4 Pack was not destroyed because it

was protected.

If the usage count is greater than one

then the usage count is reduced by one

and the pack is not destroyed. If a

pack is protected it is not destroyed.

If a pack is destroyed the disk is also

garbage collected.

A-4

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE

COMMENTS;

EA

Used to enter an association into an

association pack.

CALL EA(APTR,A,0,V,&1,&2)

APTR pointer to an association table.

A 8-character name of an ASSOCIATION,

0 8-character name of an OBJECT.

V 8-character name of a VALUE.

RC=4 This association already exists in

this association pack.

RC=8 APTR does not point to an associa-

tion pack. No action is taken.

EA is used to establish associations

such that A(0)=V.

A-5

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

EMP

Used to empty a pack.

CALL EMP(PPTR)

PPTR pointer to pack to be emptied,

None.

Lists cannot be emptied.

A-6

ARGUMENTS;

NAME: EN

PURPOSE: Used to create packs.

CALLING SEQUENCE: CALL EN(LPTR,NAME,LEN,TYPE,NLEN,PPTR,

&1,&2,&3)

LPTR pointer to a list in which the

pack is to be defined.

NAME 8-character name of the pack to be

defined.

LEN number of units that data region is

to have (halfword integer).

TYPE type of pack (halfword Integer).

There are six predefined types of

packs:

0 - master list(12 bytes/unit)

1 - list (12 bytes/unit)

2 - line directory (10 bytes/unit)

3 - association table (24

bytes/unit)

4 - stack or queue (4 bytes/unit)

5 - data pack (4 bytes/unit)

NLEN number of words for negative region

(halfword integer).

PPTR pointer to defined pack (returned).

RC=4 pack with this NAME already exists

in this list. PPTR is set equal to

pointer of existing pack. This will cause

RETURN CODE;

COMMENTS:

A-7

the pack to be brought off the

disk if it is not already in virtual

memory.

RC=8 LPTR does not point to a list.

No action is taken; PPTR is unchanged,

FC=12 If the user is creating a list then

a RC of 12 means that a list of the

same name as NAME already exists

within the permanent data structure.

PPTR is set equal to pointer of

existing pack. Duplicate list jiames

are not checked for in a temporary

data structure.

EN is used to create packs in both a

temporary and permanent data structure.

A temporary data structure is started

by creating a list with the ENT routine

and then using the EN routine to create

all other packs which form the temporary

data structure. The master list is

created for a permanent data structure

by using EN with the TYPE set equal to

zero (LPTR is ignored). If master direc-

tor, already exists the return code is

set to four.

A-8

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

ENT

Used to create temporary packs.

CALL ENT(NAME,LEN,TYPE,NLEN,PPTR)

See EN routine

None

ENT cannot be used to create a pack of

Type 0. ENT is used to create free-

standing temporary packs (i.e., those

which are not connected to any data struc-

ture) and to start a temporary data

structure. A temporary data structure

is started by using the ENT routine with

the type set equal to one (see Example 4).

A-9

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

EXP

Used to expand or contract the negative

and/or data region of a pack.

CALL EXP(PPTR,LEN,NL,&1)

PPTR pointer to pack.

LEN number of units by which the data

region is to be expanded (halfword

integer).

NL number of additional units by which

the negative region is to be expanded

(halfword integer).

RC=4 trouble from GETSPACE.

COULD NOT EXPAND PACK.

If LEN is negative then the pack will

be contracted to its current data size.

If LEN is equal to zero then nothing

will be done to the data region.

If NL is negative then the negative

region will be shortened by that number

of units.

If NL is zero then nothing will be done

to the negative region.

Packs of type greater than 5 cannot be

contracted.

A-10

NAME:

PURPOSE;

FA

To retrieve associations from an asso-

ciation table.

CALLING SEQUENCE: CALL FA(APTR,A,0,V,&1,&2)

ARGUMENTS:

RETURN CODE:

COMMENTS;

APTR pointer to an association table.

A 8-character name of an ASSOCIATION

or a pointer.

0 8-character name of an 0BJECT or

a pointer.

V 8-character name of a VALUE or a

pointer.

RC=4 This association does not exist in

this association table.

RC=8 APTR does not point to an associa-

tion pack.

FA is used to answer the following ques-

tions of an association table.

1. A(0)=V

2. A(0)=?

3. A(?)=V

4. ?(0)=V

5. A(?)=?

6. ?(?)=V

7. ?(0)=?

8. ?(?)=?

where A,0, or V is some specified 8-

character element, and ? asks what

A-11

set of elements satisfies the relation.

Question 1 simply asks, Does this rela-

tion exist? Question 2 asks, What are

all the Vs with the given A and 0, as

specified? To indicate these questions,

A and/or 0 and/or V are replaced by a

pointer to a vector to where the user

wants the answer. The higher order byte

of the pointer must be set to a question

mark to indicate that it is a pointer.

The answer to Questions 2 through 8 is,

in general, a set and not one element.

When a vector is stored with the answer,

the last element is blanked so that the

user can determine how many elements are

returned. If the pointer is zero then

the results are printed.

A-X2

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

FA1

To retrieve an association from an

association table. Returns on first

match.

CALL FA1(A?TR,A,0,V,&1,&2)

Same as for FA.

Same as for FA.

See FA.

FAl should be used when the user is

expecting only one element in the answer

set to Questions 2 through 8. This

procedure saves time especially if the

table is very large, in which case the

pointers do not have to point to vectors.

Since only one element is expected the

last element of the answer set is not

blanked, thus enabling the pointer to

point to a double word if desired. This

is useful in some applications.

A-13

NAME:

PURPOSE:

FN

To retrieve the pointer to a predefined

pack.

CALLING SEQUENCE: CALL FN(LPTR,NAME,PPTR,&1,&2)

ARGUMENTS:

RETURN CODE:

COMMENTS

LPTR pointer to list in which pack was

defined.

NAME 8-character name of pack that

pointer is wanted for.

PPTR pointer to predefined pack (returned).

RC=4 pack with this NAME does not exist

in this list. PPTR is unchanged.

RC=8 LPTR does not point to a list. No

action is taken; PPTR is unchanged.

If the pack is out on disk it is brought

in to virtual memory.

FN is used on both permanent and tempo-

rary data structures.

All the names and/or pointers in a list

can be obtained by replacing the NAME

and/or PPTR arguments with a pointer to

a vector where the names and/or pointers

are to be placed. The higher order byte

of the pointer must be the character "?"

in order to identify it as a pointer to

a vector. If the pointer is zero then

the results are printed. When the NAME

vector is stored the last name is blanked.

A-14

When the PPTR vector is stored the last

pointer is zeroed. Hence the vectors

should always be at least one element

longer than necessary.

!

NAME:

PURPOSE:

CALLING SEQUENCE:

A-15

FNM

To retrieve the pointer to a prede-

fined pack. The last two characters of

the pack name are masked.

Same as FN.

A-16

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

FREEP

To free a pack.

CALL FREEP(PPTR)

PPTR pointer to pack.

None.

Before a pack is freed from virtual

memory (thereby returning the pack storag'

to the system) it is checked to see if

it has been changed while in virtual

memory. If it has, it is saved on the

disk. If a temporary pack is freed it

is destroyed. If PPTR points to a list

then everything linked to this list is

released.

A-17

NAME:

PURPOSE:

CALLING SEQUENCE!

ARGUMENTS:

RETURN CODE:

COMMENTS:

GETB

Used to get the next data word from the

bottom of a queue.

CALL GETB(PPTRrDATA,&l,&2)

PPTR pointer to pack of Type 4.

DATA a word of data (returned).

RC=4 queue is empty.

RC=8 PPTR does not point to a queue

(pack of Type 4).

With the set of routines PUSH, PULL,

PUTB, and GETB, the user can put data

on the top or bottom of a stack and

similarly remove it.

A-18

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

HDINF

To obtain the header of a pack.

CALL HDINF(PPTR,NAME»LEN,TYPE,NL,UC,

BP,LDfLN)

PPTR pointer to pack.

The following arguments are returned.

NAME 8-character name of pack.

LEN current number of units (halfword

integer). x

TYPE pack-type (halfwotd integer).

NL current length of negative region

in number of words (halfword integer).

UC current usage count (halfword integer).

BP back pointer to list where pack

was defined.

LD length of current data in data

region, in number of bytes.

LN line number of pack times 1000, where

pack is stored on the disk.

None.

None.

A-19

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

INCUC

Used to increment the usage count of

any pack.

CALL INCUC(PPTR)

PPTR pointer to pack.

None.

If a pack is to be used in common for

a number of applications then its usage

count should reflect this. When a pack

is destroyed its usage count is reduced

if it is greater than one, otherwise

the pack is actually destroyed (unless

it is protected).

■

i

A-20

NAME:

PURPOSE:

CALLING SEQUENCE!

ARGUMENTS:

RETURN CODE:

COMMENTS:

LIST

To retrieve the pointer to a predefined

list in a permanent data structure.

CALL LIST(NAME,LPTR,&1)

NAME 8-character name of list.

LPTR pointer to list (returned).

RC=4 list with name NAME does not exist

in the permanent data structure.

This routine can be used only on a

permanent data structure.

A-21

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

MASPTR

To get the master list pointer for the

permanent data structure.

=MASPTR(0)

None.

None.

This function returns a pointer to

the master list, the trunk of the data

structure. This is a dynamic pointer.

A-22

NAME: PROT

PURPOSE: To protect a pack so that it cannot be

destroyed by accident.

CALLING SEQUENCE: CALL PROT(PPTR)

ARGUMENTS: PPTR pointer to pack.

RETURN CODE: None.

COMMENTS: None.

A-23

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

PULL

To obtain the next data word fron» the

top of a pushdown stack and pop the stack,

CALL PULL(PPTR,DATA,&1,&2)

PPTR pointer to pack of Type 4.

DATA a word of data (returned) .

RC=4 pushdown stack is empty.

RC=8 PPTR does not point to a push-

down stack (pack of Type 4) .

The mode of DATA depends upon what the

user is passing.

I

A-24

NAME: PUSH

PURPOSE: To enter a data word onto a pushdown

stack and push the stack down.

CALLING SEQUENCE: CALL PUSH(PPTR,DATA,&!)

ARGUMENTS: PPTR pointer to pack of Type 4.

DATA a word of data.

RETURN CODE: RC=4 PPTR does not point to a pushdown

stack (pack of Type 4).

COMMENTS: None.

A-25

NAME: PUTB

PURPOSE: Used to put a data word on the bottom

of a queue.

CALLING SEQUENCE: CALL PUTB(PPTR,DATA,&1)

ARGUMENTS: PPTR pointer to pack of Type 4.

DATA a word of data.

RETURN CODE: RC=4 PPTR does not point to a queue

(pack of Type 4).

COMMENTS: None.

i

A-26

NAME:

PURPOSE:

RCB

Used to transfer data into the data

region of a pack.

CALLING SEQUENCE: CALL RBC(PBUF,PPTRrLENrDISP,&l)

ARGUMENTS; PBUF pointer to buffer.

PPTR pointer to pack.

LEN number of bytes to be transferred

(halfword integer).

DISP displacement relative to start of

data region to which data are to be

transferred (halfword integer).

RETURN CODE; RC=4 no room available in data region.

COMMENTS; None.

■

A-27

NAME:

PURPOSE:

CALLING SEQUENCE

ARGUMENTS:

RETURN CODE:

COMMENTS:

RCB

Used to transfer data from the data

region of a pack.

CALL RBC(PPTR,PBUF,LEN,DISP,&1)

PPTR pointer to pack.

PBUP pointer to buffer.

LEN number of bytes to be passed

(halfword integer).

DISP displacement relative to start of

data region from which data are

to be transferred (halfword integer).

RC=4 end of pack

If LEN is zero, then whatever is between

the DISP and the end of data is passad

to the buffer, and the LEN is set equal

to the number of bytes passed. If DISP

is within the end of data, but DISP plus

LEN is outside the end of data, then

what is actually between DISP and the

end of data is transferred and LEN is

set equal to the number of bytes passed.

A-28

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

RLBC

Used to store lines through the use of

a line directory.

CALL RLBC(PBUF,PPTR,LEN,LN,&1)

PBUF pointer to buffer.

PPTR pointer to line-directory-type pack.

LEN length of line (halfword integer)

LN line number of line times 1000 (integer).

RC=4 PPTR does not point to a line

directory.

By giving a zero length the line will be

deleted from the line directory.

A-29

NAME: RLCB

PURPOSE: Used to retrieve lines which have been

stored through the use of a line directory,

CALLING SEQUENCE: CALL RLCB (PPTR,PBUF,LEN,LN,&1»fia, &3)

ARGUMENTSi

RETURN CODE:

COMMENTS:

PPTR pointer to line-directory-type pack.

PBUF pointer to buffer.

LEN length of line (returned, halfword

integer).

LN Line number times 1000 of line

wanted (upon returning, set equal

to next line available).

RC=4 line does not exist.

RC=8 end of pack.

R>]2 PPTR does not point to a line

directory.

None.

A-30

NAME: SAVEP

PURPOSE: To save a pack onto the disk.

CALLING SEQUENCE: CALL SAVEP(PPTR)

ARGUMENTS; PPTR pointer to pack.

RETURN CODE: None.

COMMENTS: Temporary packs or packs which are part

of a temporary data structure cannot be

saved. Packs are saved only if the pack

has been changed while in virtual memory.

When a pack is saved it is not removed

from virtual memory. Uses LDN 2. If

PPTR points to a list then everything

linked to this list is saved (if it has

been changed).

■

A-31

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

SCSW

To set the change switch on a pack.

CALL SCSW{PPTR)

PPTR pointer to a pack.

None.

This routine should be called whenever

data are transferred into the negative

region of a pack of type less than 6 (if

the user expects to save that data).

The user need not call this routine,

however, if he has just created or changed

the pack by using one of the associated

routines for that pack, as long as he

enters the data into the negative region

before he calls FREER or SAVE? on this

pack.

i

A-32

NAME: START

PURPOSE: To retrieve predefined permanent data

structure from the disk.

CALLING SEQUENCE: CALL START

ARGUMENTS: None.

RETURN CODE: None.

COMMENTS: The file on which the data structure

is stored should be assigned to LDN 2.

A-33

NAME: UPROT

PURPOSE: To unprotect a pack.

CALLING SEQUENCE: CALL UPROT(PPTR)

ARGUMENTS: PPTR pointer to pack.

RETURN CODE: None.

COMMENTS: None.

!

APPENDIX B.

STRING-HANDLING PACKAGE

B-l

B-2

In order to use strings in a FORTRAN environment we

devised the following primitive string-handling subroutines

for use in CAMA. We decided to use pointers to strings

as arguments to enhance the generality of these subroutines

so that they can be used directly on packs. This scheme

also permits the use of temporary strings obtained from

virtual memory by means of the GSPACE routine.

The string-handling package allows the user to manip-

ulate strings of any lencth. Substrings may be moved, in-

serted, or shifted left or right; and gaps may be inserted

or removed from any string. Strings may also be tested

for alphabetic or numeric data, or for the occurrence of a

substring.

This appendix presents a few examples of the use of

these routines, and a detailed description of each routine.

EXAMPLES

Example 1. COMS Routine.

RES ■ C0MS(PTR2,N2,L2,PTR1,N1,L1)

Given the string

STRING2

n
^

B %

L2
JL.

N2 = 4 (starting position at which
/ scanning is to begin)

PTR2 = pointer to string that
COMS is to scan

14 (length o
string CO!
is to scai
within)

and the string

(

B-3

STRINGl

Nl = 5 (start of substring)

I IKI iBl t I Hill ■ I A| | | | |
T

PTR1 ■ pointer to LI ■ 3 (length of substring)
string that contains
substring to be
scanned for.

The resulting substring to be scanned for is MM H | I 1

and the result of the COMS routine is that RES ■ 8.

Example 2. IGAP and RflAP Routine.

CALL IGAP(PTR,N,GLEN,LEN,&10)

Consider the string

^»IM |T | S| - I S |T | M | I I A |B ITTl

^PTR ■ pointer to string LEN « 10

If N « 4 and GLEN ■ 5, then the resulting string is

(Ml T| S I'! I 1 1 I -I S| B| C| | .

If RGAP is called with N « 3, GLEN - 7, and LEN = 11, then

the resulting string is

»Ml Tl S I Bl I I I I I I Ic I I

Example 3. ISTR Routine.

CALL ISTR(PTR1,N1,L1,PTR2,N2,L2,&10)

Consider the string

STRTNG1

^Nl «2 ^Ll = 4

^rrrsi H orn-;i rmi] I
^PTRl « pointer to string

B-4

and the string

STRING2

m JJ 2-9

c N I I H ol w i ii

PTR2
T
L2 - 13

U

The resulting string would then be

I I ID I ol N | ■ |T| |s | T | o |P| \~W1E i R im

ROUTINES

Note: In the following descriptions, all arguments are

integer, and all lengths may be qrcater than 256 bytes

except where noted.

NAME: COMS

PURPOSE: To test a string for the first occurrence

of a substring.

CALLING SEQUENCE: RES - COMS{PTR2,N2#L2,PTR1,N1,L1)

ARGUMENTS: RES Integer functional result re-

turned by COMS

PTR2 pointer to STRING2 which is to

be tested for occurrence of sub-

string

N2 nth oositlon in STRING2 whereunon

testing is to begin

L2 total length of STRING2

PTR1 pointer to STRINGl which contains

substring

RETURN CODE:

COMMENTS:

D-5

Nl nth position in STRINGl which

is the start of the substrinq

LI length of substrinq

None

The length of the substrina must be

less than or equal to 256 bvtes.

RES-0 imolies no natch was nade of sub-

string.

RES«-1 imolies conflict of arguments

(N2 greater than I.?, or LI greater than L2) .

RES"N>0 imolies that a match was made of

substring at Nth oosition in STRING.

COMS must be declared as integer.

NAME:

PURPOSE:

CALLING SEOUENCE

ARGUMENTS:

RETURN CODE:

COMMENTS:

PILLC

To fill a string with a soecified character

starting at the nth position in the strinn

to the mth position in the strinq.

CALL FILLC(»»TR,N,M,CnAR)

PTR oointer to string

N nth oosition in strino

M mth oosition in strinq

CHAR soecified character to bo nronaqated

None

H should be qreater than or equal to N.

i

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

B-6

FSPACE

To free space allocated by GETSPACE or

GSPACE.

CALL FSPACE{PTR,tl)

PTR oointer to space to be freed

RC"4 soace not initially allocated bv

GSPACE

Don't free space that FORTPAN routine is

using.

NAME: GSPACE

PURPOSE: To qet space from FORTRAN.

CALLING SEQUENCE: CALL GPSACE(NB,PTR)

or PTR-GSPACE(NB,PTR)

PTR pointer to first byte of region obtained,

NB number of bytes wanted.

None

This routine may be used as a function or

as a subroutine. If it is used as a func-

tion then it must be declared as inteoor.

ARGUMENTS:

RETURN CODE:

COMMENTS:

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

I GAP

To insert a gap in a string.

CALL IGAP(PTR,NfGLEN,LEN,il)

PTR pointer to string

RETURN CODE:

COMMENTS:

B-7

N nth position in string where gap is

to start

GLEN length of gap to be inserted

LEN total length of string

RC=4 1>N>LEN

The string is shifted to the right and

the gap is filled with blanks. Characters

shifted beyond LEN are lost.

NAME: ISTR

PURPOSE: To insert a substring into a string.

CALLING SEQUENCE: CALL ISTR(PTR1,N1,L1,PTR2,N2,L2,Si)

ARGUMENTS: PTRl pointer to STRINGl which contains

substring

Ml nth position in STRINGl which is

the start of substring

LI length of substring

PTR2 pointer to STRING2 in which sub-

string is to be inserted

N2 nth position in STRING2 at which

substring is to begin

L2 total length of STRING2

RETURN CODE: l^Nl or 1>N2>L2

COMMENT: None

i

B-8

NAME: MOVFL

PURPOSE: To move a substring into a string and fill

the rest of the string with a specified

character.

CALLING SEQUENCE: CALL MOVFL(PTRl,PTR2,N1,LI,N2,L2,CHAR)

ARGUMENTS:

RETURN CODE:

COMMENTS:

PTRl oointer to STRINGl which contains

substring

PTR2 pointer to STRING2 in which sub-

string is to be moved

Nl nth position in STRINGl which is

the start of the substring to be

moved

Ll length of substring

N2 nth position in STRING2 at which

substring is to begin

L2 total length of STRING2

CHAR fill character

None

L2 should be greater than N2 plus Ll.

NAME:

PURPOSE:

CALLING SEOUENCE:

ARGUMENTS:

MOVS

To move a substring into a string.

CALL MOVS(PTRl,PTR2,N1,L1,N2)

PTRl pointer to STRINGl which contains

substring

LI

N2

RETURN CODE: None

COMMENTS: None

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE;

COMMENTS:

n-9

PTR2 pointer to STRING2 in which sub-

string is to be moved

Nl nth position in STRINGl which is the

start of the substring to be moved

length of substring

nth position in STRING2 at which

substring is to begin

RGAP

To remove a gap.

CALL RGAP(PTR,N,GLENfLEN,&l)

PTR pointer to string

N nth position in string where gap

starts

GLEN length of gap

LEN total length of string

RC=4 1>N>LEN

The string is shifted to the left, thereby

closing the gap. The gap created by the

left shift is filled with blanks.

NAME:

PURPOSE;

SHIFT

To shift a substring within a string right

or left.

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS s

B-10

CALL SHIFT (PTR,N.l,N2,LI,L2,&1)

PTR pointer to string which contains

substring

Nl nth position in string which is

the start of the substring

N2 nth position in string to which

substring is to be shifted

LI length of substring

L2 total length of string

RC=4 1>N1>L2 or 1>N2>L2

N1>N2 => right shift

N1>N2 => left shift

Gap created during shifting is filled

with blanks.

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE;

COMMENTS:

STORC

To store a specified character at the nth

position in a string

CALL STORC(PTR,N,CHAR)

PTR pointer to string

N nth position in string

CHAR specified character to be stored at.

nth position in string

None

One character is stored not inserted at

the nth position in the string.

B-ll

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETUPN CODE:

COMMENTS:

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

TALPH

To test for an alphabetic character at

the nth position of a string.

CALL TALPII(PTRfN,&l)

PTR pointer to string

N nth position in string

RC=4 nth character in string is an

alphabetic character

None

COMMENTS:

TNUM

To test for a numeric character at the

nth position of a string.

CALL TNUM(PTR,N,&1)

PTR pointer to string

N nth position in string

RC=4 nth character in string is a numeric

character

None

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

TSCII

To test for a specified character at the

nth position of a string.

CALL TSCHCPTR^TESTC^l)

PTR pointer to string

i

RETURN CODE:

COMMENTS

B-12

N nth position in string

TESTC test character

RC=4 a match was made between nth

character in string and TESTC

None

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

Used to get the address of a FORTRAN

VARIABLE.

PTR = $(VAR)

VAR any FORTRAN VARIABLE

None

$ must be declared as integer.

UNCLASSIFIED
S»cuftty Clwifi«

47

eurlty flc«tion

INATINOTCTIVITV (Corporate t
iWHlfl tfTHHI *tt i'ttUlf rl,<

t. ONIOINATINO ACTIVITV rCorporaraaul/ior^

UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

DOCUMENT CONTROL DATA - R & 2

Jii. ?I»35!T SeCUN.TY CLASSiFICATION

' Unclassified pr GROUP

I. REPORT TITLE

THE CAMA DATA STRUCTURE

*. DESCRIPTIVE NOTtS 'Typo ul report und Im.uaive dmltn)
Memorandum

S. AUTHORIS) (First nan«, middle miliml, Imti name)

L.J. Julyk and L.W. Wolf

e. REPORT DATE

! August 1970
n*. TOTAL «0. OF PAGES

• 46
rt. Ni. OF azPi

1 7
8«. CONTRACT OR GRANT NO.

MsAfrM* OSA-3050

C«. ORIGINATOR'S REPORT NUMBERISI

Memorandum 29

]96. OTHER REPORT NOIS) (Any other number* that may be attigned
' thie report)

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

11. S'JOBLEVES'TaRV NCES :2. SPONSORING MILITARY ACTIV:TY

Advanced Research Projects Agency

13. ABSTRACT

The CAMA Data Structure is a variation on a standard inverted-
tree data structure. Data is stored in "packs" which are blocks
of contiguous, dynamically allocated storage. Once a pack has
been defined it need not remain in virtual memory. If it is a
member of the permanent Data Structure it can be shifted out of
virtual memory and stored on disk memory until it is referenced
again. If it is a member of a temporary Data Structure it can
be destroyed when it is no longer needed. "Garbage collection"
is handled automatically for all "predefined types".of packs.

DD FORM
I NOW •■ 1473 Unclassified

Security Classification

uiic xao
»•cuiifty ciaitlTi IcatloM

14.
KEY mono*

LINK A
HOLI WT

UH*
noLt WT

hUUU
wom .JLL

data structure
inverted-tree data structure
information retrieval
CAMA data structure
dynamic data structure
pack
data pack
temporary data structure
permanent data structure
associated tables

Unclassified
Security CUiBiftcatlon

